(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond3(gr(x, 0), x, y)
cond2(false, x, y) → cond4(gr(y, 0), x, y)
cond3(true, x, y) → cond3(gr(x, 0), p(x), y)
cond3(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
cond4(true, x, y) → cond4(gr(y, 0), x, p(y))
cond4(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cond3(true, s(x114865_5), y) →+ cond3(true, x114865_5, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x114865_5 / s(x114865_5)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond3(gr(x, 0'), x, y)
cond2(false, x, y) → cond4(gr(y, 0'), x, y)
cond3(true, x, y) → cond3(gr(x, 0'), p(x), y)
cond3(false, x, y) → cond1(and(gr(x, 0'), gr(y, 0')), x, y)
cond4(true, x, y) → cond4(gr(y, 0'), x, p(y))
cond4(false, x, y) → cond1(and(gr(x, 0'), gr(y, 0')), x, y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond3(gr(x, 0'), x, y)
cond2(false, x, y) → cond4(gr(y, 0'), x, y)
cond3(true, x, y) → cond3(gr(x, 0'), p(x), y)
cond3(false, x, y) → cond1(and(gr(x, 0'), gr(y, 0')), x, y)
cond4(true, x, y) → cond4(gr(y, 0'), x, p(y))
cond4(false, x, y) → cond1(and(gr(x, 0'), gr(y, 0')), x, y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0') → 0'
p(s(x)) → x
Types:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond1,
cond2,
gr,
cond3,
cond4They will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
cond1 = cond3
cond1 = cond4
gr < cond2
cond2 = cond3
cond2 = cond4
gr < cond3
gr < cond4
cond3 = cond4
(8) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
gr, cond1, cond2, cond3, cond4
They will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
cond1 = cond3
cond1 = cond4
gr < cond2
cond2 = cond3
cond2 = cond4
gr < cond3
gr < cond4
cond3 = cond4
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gr(
gen_0':s4_0(
n6_0),
gen_0':s4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gr(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
false
Induction Step:
gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond2, cond1, cond3, cond4
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond1 = cond4
cond2 = cond3
cond2 = cond4
cond3 = cond4
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond2.
(13) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond3, cond1, cond4
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond1 = cond4
cond2 = cond3
cond2 = cond4
cond3 = cond4
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond3.
(15) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond1, cond4
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond1 = cond4
cond2 = cond3
cond2 = cond4
cond3 = cond4
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond1.
(17) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond4
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond1 = cond4
cond2 = cond3
cond2 = cond4
cond3 = cond4
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond4.
(19) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond3(
gr(
x,
0'),
x,
y)
cond2(
false,
x,
y) →
cond4(
gr(
y,
0'),
x,
y)
cond3(
true,
x,
y) →
cond3(
gr(
x,
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
cond4(
true,
x,
y) →
cond4(
gr(
y,
0'),
x,
p(
y))
cond4(
false,
x,
y) →
cond1(
and(
gr(
x,
0'),
gr(
y,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falsep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
gr :: 0':s → 0':s → true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
0' :: 0':s
false :: true:false
cond4 :: true:false → 0':s → 0':s → cond1:cond2:cond3:cond4
p :: 0':s → 0':s
and :: true:false → true:false → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)